
Vuls & VulsRepo:
A Highly Flexible Vulnerability

Scanner and Visualizer
Yasunari Momoi momo@iij.ad.jp

Internet Initiative Japan Inc.

Apricot 2018

mailto:momo@iij.ad.jp

Agenda

u What is Vuls?

u How it works

u Visualization with VulsRepo

u Reporting in local language

u (near) future work

About me

u momo: Yasunari Momoi

u Internet Initiative Japan Inc., IIJ-SECT member

u Office of Emergency Response and Clearinghouse for Security Information,
Advanced Security Division

u Facebook ymomoi Twitter @sbg

u Software Developer, Network Engineer, Server Engineer, Security, SOC/CSIRT

u Supporting some Open Source Software and User Community

u Special Interest

u various kind of foods, local foods

u Heavy Metal / Hard Rock Music

u Cats!

Vuls: VULnerability Scanner

u Vuls is the VULnerability Scanner written in go language.

u Develop by community: Vuls dev team

u Main developer: Kota Kanbe @kotakanbe

u Also supported by Future Architect, Inc.

u Open Source Software

u GPL v3.0

u Distribute with Docker image

u https://vuls.io/

https://vuls.io/

Vuls: main feature (1)

u Vuls supports many kinds of Linux/FreeBSD systems

u Alpine Linux, Ubuntu, Debian, CentOS

u Amazon Linux, RedHat Enterprise Linux, Oracle Linux, SUSE Enterprise Linux

u Raspbian

u FreeBSD

u High flexibility

u scans local/remote machine

u scans system inside Docker container

u works in an isolated network (without the Internet connectivity)

Vuls: main feature (2)

u To improve accuracy, Vuls uses various public information sources

u NVD/CVE

u Vendor information

u OVAL (RedHat, Debian, Ubuntu, SUSE, Oracle Linux)

u Alpine secdb

u RHSA/ALAS/ELSA/FreeBSD-SA

u ChangeLog

u JVN (Japan Vulnerability Notes in Japanese language)

Vuls: main feature (3)

u Optionally, scanning non–OS packages

u using configuration file and CPE information

u using output from OWASP Dependency Check

u Scanning results to Email/Slack

u Reports in local language

u Japanese users can refer JVN database :D

Vuls: scanning and reporting example

Vuls: flexibility (1)

u Vuls can be worked on various network / server configurations

u Case 1: Install Vuls on one host and scan remotely

Vuls: flexibility (2)

u Case 2: Install Vuls on all hosts and scan locally

u Just copying single executable file and configuration

u Vuls outputs result in single JSON file

Vuls: flexibility (3)

u Case 3: Hybrid remote and local scan

u Vuls can scan inside Docker container

u You can collect result file using any method

Vuls: flexibility (4)

u Just single executable file

u because written in go language

u easy to use on any host (just copying!)

u Output is simple JSON file

u no server, no database host required

u you can view scanning results at any host (just copying!)

u you can copy/merge results

Vuls: scanning methods

u Vuls has 3 scanning methods

u fast scan (offline)

u fast scan

u deep scan

Vuls: fast scan mode

u Scans without root privilege (except Raspbian)

u Just gets the list of installed packages and versions

u Compares with vulnerable package lists from vulnerability databases

u Just compares versions

u just...

Vuls: comparing package versions is ...

u It is “a little bit” tough

u We understand managing package and versioning is a tough task

u Version numbering is in chaos

u Implements all cases

u He did!

Vuls: deep scan mode

u Needs root privileges (on some OSes)

u Slow

u Crawls additional data from installed packages if available

u ChangeLog

u Why process ChangeLog?

u ChangeLog is written directly by the developer

u It seems to be relatively credible?

u Security fix logline has relevant CVE ID

Vuls: improving detecting accuracy

u Vulnerability databases sometimes...

u miss related CVE ID

u take time to update their contents

u lack of affected systems

u Vuls uses as much information about patches/versions

u In these case, Vuls can find vulnerable module from other data sources

u I think this is a cool idea! :D

Vuls: supports many distributions

u System commands around packaging are different between distributions

u It is troublesome and tough

u But we did!

Vuls: reporting

u Vuls output results to simple JSON format
file

u easy to feed into other systems (DB,
ticketing, etc.)

u Notify by Email and/or Slack when
scanning is completed

u reporting summary

u Result can be read by TUI

u I recommend using VulsRepo

VulsRepo: Visualizer of Vuls

u Visualizer based on the Web

u Main developer: Takayuki Ushida @usiusi360

VulsRepo: Viewing scanning results

u Viewing charts with dynamic pivot table

u coloring, filtering, etc.

VulsRepo: CVSS score viewer with chart

u You can read vulnerability description

u Description summary

u CVSS score

u CVSSv2, CVSSv3 radar chart

u related resource links

VulsRepo: viewing CVE and scan details

u CVE information and ChangeLog

Reports in a local language

u Vuls and VulsRepo can show report in a local language

u JVN (Japan Vulnerability Notes) DB has many records in Japanese

u Operators can read vulnerability reports in Japanese language!

u It is very important for Japanese people ;)

u We can support any other local languages

u but we don’t know documentations in other languages

u because we can’t read them

u Please let me know information sources in your language

u we will make it readable with Vuls and VulsRepo

(near) Future work

u More improvement in detection accuracy

u Please let me know vulnerability information databases that we miss

u Scanning Cisco products with OVAL

u Router, Switch, ...

u PoC is working (written in Perl)

u Accessing policy of network infrastructure is different from servers

u I am thinking with implementation policy

u Report in your language

u Please send request with the local resource information

Thanks!

u Vuls: https://vuls.io/

u Join Slack: http://goo.gl/forms/xm5KFo35tu

u VulsRepo: https://github.com/usiusi360/vulsrepo

https://vuls.io/
http://goo.gl/forms/xm5KFo35tu
https://github.com/usiusi360/vulsrepo

