Agenda

- What is the Telstra Programmable Network?
- Why Build on Openflow?
- Why Create (yet another) Openflow Controller?
- Our Solution
- Current State of the Project
- What’s Next?
- Get Involved!
TPN – Telstra Programmable Network

<table>
<thead>
<tr>
<th>NFV Farm</th>
<th>Sydney, Hong Kong, Tokyo, Singapore, Los Angeles, New Jersey, London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>Sydney, Hong Kong, Tokyo, Singapore, Los Angeles, Secaucus New Jersey, London</td>
</tr>
<tr>
<td>Telstra NextIP Interconnect</td>
<td>Sydney, Melbourne</td>
</tr>
<tr>
<td>IPVPN/GWAN Interconnect</td>
<td>Hong Kong, Singapore, New Jersey, London</td>
</tr>
<tr>
<td>External exchanges</td>
<td>AWS (7), ECX (6), AxonVX (2), Epsilon (2), Westin (1)</td>
</tr>
</tbody>
</table>

- 35 Programmable Network PoPs in 17 cities and 11 countries and territories
- Directly connected to Telstra's network of more than 2,000 points of presence in 200 countries
- Connect to leading public cloud providers via various DC Exchange providers

Network Devices

- Cisco CSR1000v
- Fortinet Fortigate NGFW
- Fortinet Fortiweb vAppliance
- Palo Alto VM-series
- Cisco vASA
- Riverbed vSteelhead
- VeloCloud
- Juniper vSRX
- Cisco Primare vNAM
- FortiAnalyzer
TPN Platform

Transform customer experience
Programmable (GUI/APIs)
Consumption based
Data & Analytics
Global

Marketplace

Virtual Network Functions
vFirewall, vRouter, SD-WAN

Global Exchange

Public Cloud
Data Centre
IPVPN/ Network

Multiple use cases
Cloud Connectivity, Data Centre Interconnect, Secure Internet Access, Virtual Branch Networks

Release 1 (April 2017)
R1.0 enables our IPVPN customers to connect to TPN portal and access the TPN capabilities.

Release 2 (July 2017)
R2.0 enables our Next IP customers to connect to TPN portal and access the TPN capabilities.

Release 3 (October 2017)
R3.0 enables our IPVPN and Next IP customers to deploy VNFs on uCPE housed at their premises.
TPN Build Blocks

Customer Driven (created)
- Multiple canvases
- Multi-tenant
- Create flows (L2) between building blocks

“Lego” Building Blocks:
- IPVPN’s
- Exchanges
- VNF’s (in server farms)
- Internet
- Switch Ports
- Bandwidth (on demand)

Open Marketplace
- Bring your own ‘service’

One-Click “Deploy”
- Guaranteed deploy time
- Changes as-needed (self-provision)
Why Build Yet Another OpenFlow Controller?

A few of the existing controllers available today:
Our Challenge Was A Bit Unique
At least we thought it was

- Global network with POPs in Europe, US, Asia, Australia and Middle East
- Control Plane with >300ms of latency
- Controllers located in Hong Kong
- Combination of Dark Fiber and Lit Circuits that don’t all support Link Loss Forwarding
- Guaranteed service, uncontended network
What We Found

- Constant topology changes
- Network changes increased with network complexity
- Correlation of multiple events

Convergence

- 100K’s messages into/out of the controller
- Managing >1M Flows

Events

- LAN based controllers
- High latency in Control Plane

WAN
Features We Wanted

Operations:
- Sub-Second Failover
- Auto-re-route based on real-time latency/packet loss/jitter measurements
- Self Healing/Optimizing Network
- Zero Touch Controller Deployment/Upgrade

Architecture:
- Horizontal scale
 - Number of switches
 - Number of flows
- Negative Affinity In Path Selection
- Path Selection Based on Latency
- Multiple data points for comprehensive end-to-end network state

Product:
- Complex match/actions using experimenters
- Stats collections at 1 second intervals
- Active Latency Measurement on ISL
- End-to-End Latency Measurements on every flow
Our Solution

Regionalized OpenFlow Speakers

Floodlight
Our Solution

Message Queue as ESP Bus
Our Solution

Real-time Stream Processing via Apache Storm

Floodlight Apache Kafka Apache Storm
Our Solution

GraphDB - based on Neo4j

Floodlight
Apache Kafka
Apache Storm

Neo4J
Our Solution

Reporting via OpenTSDB and HBase
Our Solution

Architecture

- HDFS
- HBASE
- KAFKA
- ZOOKEEPER
- STORM
- OpenTSDB
- TOPOLOGY ENGINE
- NEO4J

NORTHBOUND API

OPENFLOW SWITCH
Sequence Diagram
Current State

Northbound Interface
- Restful
- Create/Modify/Delete Flow
- Push/Pop/Modify VLANs
- List Flows/Switches

Telemetry
- Flow stats
- Port stats
- Switch status

Operational
- Auto-discover network
- Active monitor of ISL with Latency
- Re-Flow when topology change occurs
How’d We Do?
Based On The Original Objectives

Sub-Second Failover – **NOT YET**
Negative Affinity In Path Selection
Active Latency Measurement on ISL
End-to-End Latency Measurement on Flow
Path Selection Based on Latency
Auto-re-route based on real-time latency/packet loss/jitter measurements
Multiple data points for comprehensive end-to-end network state – **HALF DONE**
Horizontal scale (*achieved in testing*)
 - Number of switches - 10K Switches
 - Number of flows – 16M Flows
Complex match/actions using experimenters – **NOT YET**
Stats collections at 1-second intervals
Self Healing/Optimizing Network
Zero Touch Controller Deployment/Upgrade
Whats Next for Kilda?

Features
- GUI
- Consolidated Northbound API
- Lightweight Speaker
- Documentation

Functionality
- Extend topology event logic
- Complex Match/Action
- BFD for ISL status
- Fast re-route
- Pre-emptive re-route

Build
- Shorten build time
- Extend build pipeline
- Test in sandbox
What’s next for TPN?

New Capability

uCPE hardware device
- Customer can deploy VNFs from marketplace on a uCPE in their branch (Juniper NFX 250)

New virtual network functions
- Juniper vSRX
- VeloCloud SD-WAN
- Riverbed vSteelhead

Portal enhancements
- Online on-boarding for existing Telstra customers
- Automated retrieval of customer’s Telstra VPN and Internet service for information display

Release 1 (April 2017)
R1.0 enables our IPVPN customers to connect to TPN portal and access the TPN capabilities.

Release 2 (July 2017)
R2.0 enables our Next IP customers to connect to TPN portal and access the TPN capabilities.

Release 3 (October 2017)
R3.0 enables our IPVPN and Next IP customers to deploy VNFs on uCPE housed at their premises
Get Involved!

Homepage - https://github.com/telstra/open-kilda
(git clone https://github.com/telstra/open-kilda.git)

Native Development Environment

clone your GitHub fork
> make build-latest
> docker-compose up

Linux Based Environment

> vagrant up
> vagrant ssh
> ssh-keygen -t rsa _C your_email@example.com
update your GitHub fork with ssh key
clone your GitHub fork
> make build-latest
> docker-compose up
Thank you