## OpenKilda Stream Processing Meets OpenFlow

Jeff Young Product Architecture, Global Platforms



# Agenda

- What is the Telstra Programmable Network?
- Why Build on Openflow?
- Why Create (yet another) Openflow Controller?

TELSTRA

- Our Solution
- Current State of the Project
- What's Next?
- Get Involved!

## TPN – Telstra Programmable Network



## **TPN Platform**





### **TPN Build Blocks**



Customer Driven (created)

- Multiple canvases
- Multi-tenant
- Create flows (L2) between building blocks

"Lego" Building Blocks:

- IPVPN's
- Exchanges
- VNF's (in server farms)
- Internet
- Switch Ports
- Bandwidth (on demand)

Open Marketplace

- Bring your own 'service' One-Click "Deploy"
  - Guaranteed deploy time
  - Changes as-needed (self-provision)



Why Build Yet Another OpenFlow Controller?

A few of the existing controllers available today:





# Our Challenge Was A Bit Unique At least we thought it was



- Global network with POPs in Europe, US, Asia, Australia and Middle East
- Control Plane with >300ms of latency
- Controllers located in Hong Kong
- Combination of Dark Fiber and Lit Circuits that don't all support Link Loss Forwarding
- Guaranteed service, uncontended network



# What We Found

- Constant topology changes
- Network changes increased
   with network complexity
- Correlation of multiple events

- 100K's messages into/out of the controller
- Managing >1M Flows

- LAN based controllers
- High latency in Control Plane

Convergence

Events





#### **Features We Wanted**

Operations:

Sub-Second Failover

•Auto-re-route based on real-time latency/packet loss/jitter measurements

Self Healing/Optimizing Network

•Zero Touch Controller Deployment/Upgrade

Architecture:

Horizontal scale

•Number of switches

Number of flows

Negative Affinity In Path Selection

•Path Selection Based on Latency

Multiple data points for comprehensive end-to-end network state
Product:

•Complex match/actions using experimenters

•Stats collections at 1 second intervals

Active Latency Measurement on ISL

End-to-End Latency Measurements on every flow





#### **Regionalized OpenFlow Speakers**







#### Message Queue as ESP Bus







#### Real-time Stream Processing via Apache Storm







#### GraphDB - based on Neo4j







#### Reporting via OpenTSDB and HBase





## **Our Solution**

**Architecture** 



## Sequence Diagram





#### **Current State**

#### Northbound Interface

- Restful
- Create/Modify/Delete Flow
- Push/Pop/Modify VLANs
- List Flows/Switches





- Port stats
- Switch status



#### Operational

- Auto-discover network
- Active monitor of ISL with Latency
- Re-Flow when topology change occurs





#### How'd We Do? Based On The Original Objectives

Sub-Second Failover - NOT YET

Negative Affinity In Path Selection

Active Latency Measurement on ISL

End-to-End Latency Measurement on Flow

Path Selection Based on Latency

Auto-re-route based on real-time latency/packet loss/jitter measurements

Multiple data points for comprehensive end-to-end network state – HALF DONE

Horizontal scale (achieved in testing)

Number of switches - 10K Switches

Number of flows - 16M Flows

Complex match/actions using experimenters – **NOT YET** 

Stats collections at 1 second intervals

Self Healing/Optimizing Network

Zero Touch Controller Deployment/Upgrade



### Whats Next for Kilda?

#### Features

- GUI
- Consolidated Northbound API
- Lightweight Speaker
- Documentation

#### Functionality

- Extend topology
   event logic
- Complex Match/ Action
- BFD for ISL status
- Fast re-route
- Pre-emptive reroute

#### Build

- Shorten build time
- Extend build pipeline
- Test in sandbox



## What's next for TPN?



#### Release 1 (April 2017)

R1.0 enables our IPVPN customers to connect to TPN portal and access the TPN capabilities.

#### Release 2 (July 2017)

R2.0 enables our Next IP customers to connect to TPN portal and access the TPN capabilities.

#### Release 3 (October 2017)

R3.0 enables our IPVPN and Next IP customers to deploy VNFs on uCPE housed at their premises

#### **New Capability**

#### uCPE hardware device

 Customer can deploy VNFs from marketplace on a uCPE in their branch (Juniper NFX 250)

#### New virtual network functions

- Juniper vSRX
- VeloCloud SD-WAN
- Riverbed vSteeklhead

#### Portal enhancements

- Online on-boarding for existing
   Telstra customers
- Automated retrieval of customer's Telstra VPN and Internet service for information display

#### Get Involved!

Homepage - https://github.com/telstra/open-kilda

(git clone <a href="https://github.com/telstra/open-kilda.git">https://github.com/telstra/open-kilda.git</a>)

#### Native Development Environment

- # clone your GitHub fork
- > make build-latest
- > docker-compose up

#### Linux Based Environment

> vagrant up > vagrant ssh > ssh-keygen -t rsa \_C your\_email@example.com # update your GitHub fork with ssh key # clone your GitHub fork > make build-latest > docker-compose up

TELSTR/

21

## Thank you

